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Abstract

Automatic facial image analysis has been a long stand-
ing research problem in computer vision. A key component
in facial image analysis, largely conditioning the success of
subsequent algorithms (e.g., facial expression recognition),
is to define a vocabulary of possible dynamic facial events.
To date, that vocabulary has come from the anatomically-
based Facial Action Coding System (FACS) or more subjec-
tive approaches (i.e. emotion-specified expressions). The
aim of this paper is to discover facial events directly from
video of naturally occurring facial behavior, without re-
course to FACS or other labeling schemes. To discover fa-
cial events, we propose a novel temporal clustering algo-
rithm, Aligned Cluster Analysis (ACA), and a multi-subject
correspondence algorithm for matching expressions. We
use a variety of video sources: posed facial behavior (Cohn-
Kanade database), unscripted facial behavior (RU-FACS
database) and some video in infants. ACA achieved mod-
erate intersystem agreement with manual FACS coding and
proved informative as a visualization/summarization tool.

1. Introduction
The face is one of the most powerful channels of nonver-

bal communication. Facial expression provides cues about
emotional response, regulates interpersonal behavior, and
communicates aspects of psychopathology. While people
have believed for centuries that facial expressions can re-
veal what people are thinking and feeling, it is relatively re-
cently that the face has been studied scientifically for what
it can tell us about internal states, social behavior, and psy-
chopathology.

Faces possess their own language. To represent the el-
emental units of this language, Ekman and Friesen [11] in
the 70’s proposed the Facial Action Coding System (FACS).
FACS segments the visible effects of facial muscle acti-
vation into “action units”. Each action unit is related to
one or more facial muscles. The FACS taxonomy was de-
velop by manually observing graylevel variation between
expressions in images and to a lesser extent by recording

Figure 1. Selected video frames of unposed facial behavior from
three participants. Different colors and shapes represent dynamic
events discovered by unsupervised learning: smile (green circle)
and lip compressor (blue hexagons). Dashed lines indicate corre-
spondences between persons.

the electrical activity of underlying facial muscles [3]. Be-
cause of its descriptive power, FACS has become the state
of the art in manual measurement of facial expression and
is widely used in studies of spontaneous facial behavior. In
part for these reasons, much effort in automatic facial im-
age analysis seeks to automatically recognize FACS action
units [1, 27, 23, 26].

In this paper, we ask whether unsupervised learning can
discover useful facial units in video sequences of one or
more persons, and whether the discovered facial events cor-
respond to manual coding of FACS action units. We pro-
pose extensions of an unsupervised temporal clustering al-
gorithm, Aligned Cluster Analysis (ACA). ACA is an ex-
tension of kernel k-means to cluster multi-dimensional time
series. Using this unsupervised learning approach it is pos-
sible to find meaningful dynamic clusters of similar facial
expressions in one individual and correspondences between
facial events across individuals in an unsupervised manner.
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Fig. (1) illustrates the main idea of the paper. In addition,
we show how our algorithms for temporal clustering of fa-
cial events can be used for summarization and visualization.

2. Temporal segmentation and clustering of
human behavior

This section reviews previous work on temporal cluster-
ing and segmentation of facial and human behavior.

With few exceptions, previous work on facial expression
or action unit recognition has been supervised in nature (i.e.
event categories are defined in advance in labeled training
data, see [1, 27, 23, 26] for a review of state-of-the-art al-
gorithms). Little attention has been paid to the problem
of unsupervised temporal segmentation or clustering prior
to recognition. Essa and Pentland [12] proposed FACS+ a
probabilistic flow-based method to describe facial expres-
sions. Hoey [15] presented a multilevel Bayesian network
to learn in a weakly supervised manner the dynamics of
facial expression. Bettinger et al. [2] used AAM to learn
the dynamics of person-specific facial expression models.
Irani and Zelnik [33] proposed a modification of structure-
from-motion factorization to temporally segment rigid and
non-rigid facial motion. De la Torre et al. [8] proposed
a geometric-invariant clustering algorithm to decompose a
stream of one person’s facial behavior into facial gestures.
Their approach suggested that unusual facial expressions
might be detected through temporal outlier patterns. In
summary, previous work in facial expression addresses tem-
poral segmentation of facial expression in a single person.
The current work extends previous approaches to unsuper-
vised temporal clustering across individuals.

Outside of the facial expression literature, unsupervised
temporal segmentation and clustering of human and animal
behavior has been addressed by several groups. Zelnik-
Manor and Irani [32] extracted spatio-temporal features
at multiple temporal scales to isolate and cluster events.
Guerra-Filho and Aloimonos [13] presented a linguistic
framework to learn human activity representations. The
low level representation of their framework, motion prim-
itives, referred to as kinetemes, were proposed as the foun-
dation for a kinetic language. Yin et al. [30] proposed a
discriminative feature selection method to discover a set of
temporal segments, or units, in American Sign Language.
These units could be distinguished with sufficient reliabil-
ity to improve accuracy in ASL recognition. Wang et al.
[29] used deformable template matching of shape and con-
text in static images to discover action classes. Turaga et al.
[28] presented a cascade of dynamical systems to cluster a
video sequence into activities. Niebles et al. [21] proposed
an unsupervised method to learn human action categories.
They represented video as a bag-of-words model of space-
time interest points. Latent topic models were used to learn
their probability distribution, and intermediate topics cor-

responded to human action categories. Oh et al. [22] pro-
posed parametric segmental switching dynamical models to
segment honeybees behavior. Related work in temporal seg-
mentation has been done, as well, in the area of data min-
ing [17] and change point detection [14]. Unlike previous
approaches, we propose the use of ACA. ACA generalizes
kernel k-means to cluster time series, providing a simple
yet effective and robust method to cluster multi-dimensional
time series with few parameters to tune.

3. Facial feature tracking and image features
Over the last decade, appearance models [4, 19] have

become increasingly prominent in computer vision. In the
work below, we use AAMs [19] to detect and track facial
features, and extract features. Fig. (2a) shows an example
of AAM using image data from RU-FACS [1].

Sixty-six facial features and the related face texture are
tracked throughout an image sequence. To register images
to a canonical view and face, a normalization step registers
each image with respect to an average face. After the nor-
malization step, we build shape and appearance features for
the upper and lower face regions. Shape features include,
xU
1 the distance between inner brow and eye, xU

2 the dis-
tance between outer brow and eye, xU

3 the height of eye, xL
1

the height of lip, xL
2 the height of teeth, and xL

3 the angle of
mouth corners. Appearance features are composed of SIFT
descriptors computed at points around the outer outline of
the mouth (at 11 locations) and on the eyebrows (5 points).
The dimensionality of the resulting feature vector is reduced
using PCA to retain 95% of the energy, yielding appearance
features for the upper (xU

4 ) and lower (xL
4 ) face. For the task

of clustering emotions, features from both face parts were
used to obtain a holistic representation of the face. For more
precise facial action segmentation, each face part was con-
sidered individually. See Fig. (2b) for an illustration of the
feature extraction process.

4. Aligned Cluster Analysis (ACA)
This section describes Aligned Cluster Analysis (ACA),

an extension of kernel k-means to cluster time series. ACA
combines kernel k-means with Dynamic Time Alignment
Kernel (DTAK). A preliminary version of ACA was pre-
sented at [36].

4.1. Dynamic time alignment kernel (DTAK)
To align time series, a frequent approach is Dynamic

Time Warping (DTW). A known drawback of using DTW
as a distance is that it fails to satisfy the triangle inequal-
ity. To address this issue, Shimodaira et al. [25] proposed
Dynamic Time Alignment Kernel (DTAK). The DTAK be-
tween two sequences, X .

= [x1, · · · ,xnx ] ∈ Rd×nx (see
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Figure 2. Facial features used for temporal clustering. (a) AAM fit-
ting across different subjects. (b) Eight different features extracted
from distance between tracked points, height of facial parts, angles
for mouth corners, and appearance patches.

notation 1) and Y
.
= [y1, · · · ,yny ] ∈ Rd×ny , is defined as:

τ = max
Q

l∑
c=1

1

nx + ny
(q1c − q1c−1 + q2c − q2c−1)κq1cq2c ,

where κij = φ(xi)
Tφ(yj) represents the kernel similarity

between frame xi and yj . Q ∈ R2×l is an integer matrix
that contains indexes to the alignment path between X and
Y. For instance, if the cth column of Q is [q1c q2c]

T , the
q1c frame in X corresponds to the q2c frame in Y. l is the
number of steps needed to align both signals.

DTAK finds the path that maximizes the weighted sum of
the similarity between sequences. A more revealing math-
ematical expression can be achieved by considering a new
normalized correspondence matrix W ∈ Rnx×ny , where
wij = 1

nx+ny
(q1c − q1c−1 + q2c − q2c−1) if there exist

q1c = i and q2c = j for some c, otherwise wij = 0. Then
DTAK can be rewritten:

τ(X,Y) = tr(KTW) = ψ(X)Tψ(Y), (1)

where ψ(·) denotes a mapping of the sequence into a feature
space, and K ∈ Rnx×ny . More details in [35].

4.2. k-means and kernel k-means
Clustering refers to the partition of n data points into

k disjoint clusters. Among various approaches to unsu-
pervised clustering, k-means [18, 34] and kernel k-means

1Bold capital letters denote a matrix X, bold lower-case letters a col-
umn vector x, and all non-bold letters denote scalar variables. xj repre-
sents the jth column of the matrix X. xij denotes the scalar in the row i
and column j of the matrix X. Ik ∈ Rk×k denotes the identity matrix.
||x||22 denotes the norm of the vector x. tr(X) =

∑
i xii is the trace of

the matrix X. ||X||2F = tr(XTX) = tr(XXT ) designates the Frobe-
nius norm of a matrix. ◦ denotes the Hadamard or point-wise product.

(KKM) [10, 31] are among the simplest and most popular.
k-means and KKM clustering split a set of n objects into
c groups by minimizing the within cluster variation. KKM
finds the partition of the data that is a local optimum of the
following energy function [34, 7]:

Jkkm(M,G) = ||ψ(X)−MG||2F , (2)

where X ∈ Rd×n, G ∈ Rk×n and M ∈ Rd×k. G is
an indicator matrix, such that

∑
c gci = 1, gij ∈ {0, 1}

and gij is 1 if di belongs to class c, n denotes the number
of samples. The columns of X contain the original data
points, and the columns of M represent the cluster cen-
troids; d is the dimension of the kernel mapping. In the
case of KKM, d can be infinite dimensional and typically
M cannot be computed explicitly. Substituting the optimal
M = ψ(X)GT (GGT )−1 value, eq. (2) results in:

Jkkm(G) = tr
(
LK

)
L = In −GT (GGT )−1G. (3)

The KKM method typically uses a local search [10] to find a
matrix G that makes L maximally correlated with the sam-
ple kernel matrix K = ψ(X)Tψ(X).

4.3. ACA objective function
Given a sequence X

.
= [x1, · · · ,xn] ∈ Rd×n with n

samples, ACA decomposes X into m disjointed segments,
each of which corresponds to one of k classes. The ith seg-
ment, Zi

.
= [xsi , · · · ,xsi+1−1]

.
= X[si,si+1) ∈ Rd×wi ,

is composed of samples that begin at position si and end
at si+1 − 1. The length of the segment is constrained as
si+1 − si ≤ nmax. nmax is the maximum length of the
segment that controls the temporal granularity of the factor-
ization. An indicator matrix G ∈ {0, 1}k×m assigns each
segment to a class; gci = 1 if Zi belongs to class c.

ACA combines kernel k-means with the DTAK to
achieve temporal clustering by minimizing:

Jaca(G,M, s) = ||[ψ(Z1) · · · ψ(Zm)]−MG||2F . (4)

The difference between KKM and ACA is the introduc-
tion of the variable s that determines the start and end of
each segment Zi(s). ψ(·) is a mapping such that, τij =
ψ(Zi)

Tψ(Zj) = tr(KT
ijWij) is the DTAK. Observe that

there are two kernel matrices, T ∈ Rm×m is the kernel seg-
ment matrix and K ∈ Rn×n is the kernel sample matrix
(kernel between samples). T ∈ Rm×m can be expressed
re-arranging the m × m blocks of Wij ∈ Rwi×wj into a
global correspondence matrix W ∈ Rn×n, that is:

T =[τij ]m×m = [tr(KT
ijWij)]m×m = H(K ◦W)HT ,

where H ∈ {0, 1}m×n is the sample-segment indicator ma-
trix; hij = 1 if jth sample belong to ith segment. Un-
fortunately, DTAK is not a strictly positive definite kernel
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Figure 3. Example of temporal clustering. (a) 1-D sequence. (b)
Results of temporal clustering. (c) Self-similarity matrix (K). (d)
Correspondence matrix (W). (e) Frame-segment indicator matrix
(H). (f) Segment-class indicator matrix (G).

[6]. Thus, we add a scaled identity matrix to K; that is,
K← K+σIn, were σ is chosen to be the absolute value of
the smallest eigenvalue of T if it has negative eigenvalues.

After substituting the optimal value of M in eq. (4),
a more enlightened form of Jaca can be derived by re-
arranging them×m blocks of Wij ∈ Rwi×wj into a global
correspondence matrix W ∈ Rn×n,

Jaca(G, s) = tr
(
(L ◦W)K

)
, (5)

where L = In−HTGT (GGT )−1GH. Recall H depends
on s. Fig. (3) illustrates the matrices K, H, W and G in
a synthetic example of temporal clustering. Consider the
special case when, m = n and H = In; that is, each frame
is treated as a segment. In this case, DTAK would be a
kernel between two frames, i.e., W = 1n1

T
n and ACA is

equivalent to kernel k-means, eq. (3).
Optimizing ACA is a non-convex problem. We use a co-

ordinate descent strategy that alternates between optimizing
G and s while implicitly computing M. Given a sequence
X of length n, the number of possible segmentations is ex-
ponential, which typically renders a brute-force search in-
feasible. We adopt a dynamic programming (DP) based al-
gorithm that has a complexity O(n2nmax) to exhaustively
examine all the possible segmentations. See [35] for more
details on the optimization and the code.

4.4. Learning good features for ACA
The success of kernel machines largely depends on the

choice of the kernel parameters and the functional form
of the kernel. As in previous work on multiple kernel
learning [9, 5], we consider the frame kernel as a pos-
itive combination of multiple kernels, that is: K(a) =∑d

l=1 alKl, s.t. a ≥ 0d where the set {K1, · · · ,Kd}
is given and the al’s are to be optimized.

In the ideal case [9, 5], if two samples belong to the same
class, the kernel function outputs a similarity of 1 and 0
otherwise. In the case of temporal segmentation, the label
of the ith frame is given by Ghi. Assuming that all labels

(G,H,W) are known, we minimize the distance between
the ideal kernel matrix and the parameterized one, that is:

Jlearn(a) = ‖W ◦
(
F−K(a)

)
‖2F , (6)

where F = HTGTGH, and the correspondence matrix
(W) weights individually the pair of frames that have been
used in the calculation of DTAK.

To optimize Jlearn with respect to a, we rewrite eq. (6)
as a quadratic programming problem: Jlearn(a) = aTZa−
2fTa + c, where zij = tr((W ◦ Ki)

T (W ◦ Kj)), fi =
tr((W ◦ F)T (W ◦Ki)) and c is a constant.

5. Experiments
This section reports experimental results for unsuper-

vised temporal segmentation of facial behavior and com-
pares them with emotion and FACS labels in two scenarios:
first for individual subjects and then for sets of subjects.

5.1. Data sources
We use a variety of video sources: posed facial behav-

ior from the Cohn-Kanade database [16], unscripted facial
behavior from the RU-FACS database [1], and infants ob-
served with their mothers [20]. The databases are:

• Cohn-Kanade (CK) database: The database contains
a recording of posed facial behavior for 100 adults.
With a few exceptions, all are between 18 and 30 years
of age. There are small changes in pose and illu-
mination, all expressions are brief (about 20 frames
on average), begin at neutral, proceed to a target ex-
pression, and are well differentiated relative to un-
posed facial behavior in a naturalistic context (e.g.,
RU-FACS). Peak expressions for each sequences are
AU- and emotion-labeled. The latter were used in the
experiment reported below. The emotion labels were
surprise, sadness, anger, fear and joy.

• RU-FACS database: The RU-FACS database [1] con-
sists of digitized video and manual FACS of 34 young
adults. They were recorded during an interview of ap-
proximately 2 minutes duration in which they lied or
told the truth in response to an interviewer’s questions.
Pose orientation was mostly frontal with small to mod-
erate out-of-plane head motion. Image data from five
subjects could not be analyzed due to image artifacts.
Thus, image data from 29 subjects was used.

• Infant social behavior: Image data were from a three-
minute face-to-face interaction of a 6-month-old infant
with her mother [20]. The infant was seated across
from her mother. Mean head orientation was frontal
but large changes in head orientation were common.
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5.2. Facial event discovery for individual subjects
This section describes two experiments in facial event

discovery of one individual. The first experiment compares
the clustering results with the ones provided by FACS. The
second experiments uses unsupervised temporal clustering
to summarize facial behavior in an infant.

5.2.1 Individual subjects in RU-FACS
We randomly selected 10 sets of 19 subjects for learning
ACA weights and 10 subjects for testing. We compared
the performance of unsupervised ACA, ACA with learned
weights (ACA+Learn), and KKM. We used 8 features (4
upper face and 4 lower face) as described in section 3.

For each realization (10 in total), we used 10 random
subjects and ran ACA, ACA+Learn, and KKM 10 times for
each subject starting from different initializations and se-
lected the solution with least error. Because the number
and frequency of action units varied among subjects, and to
investigate the stability of the clustering w.r.t. the number
of clusters, between 8 ∼ 11 clusters were selected for the
lower face and 4 ∼ 7 for the upper face. The clustering re-
sults are the average over all clusters. The length constraint
of the facial actions was set to be nmax = 80. Accuracy is
computed as the percentage of temporal clusters found by
ACA that contain the same AU or AU combination using
the confusion matrix:

C(c1, c2) =

malg∑
i=1

mtruth∑
j=1

galgc1i
gtruthc2j |Z

alg
i ∩ Ztruth

j | (7)

where Zalg
i is the ith segment returned by ACA (or KKM),

and Ztruth
j is the jth segment of the ground-truth data.

C(c1, c2) represents the total number of frames on the clus-
ter segment c1 that are shared by the cluster segment c2 in
ground truth. galgc1i

is a binary value that indicates whether
the ith segment is classified as the c1 temporal cluster of
ACA. |Zalg

i ∩Ztruth
j | denotes the number of frames that the

segment Zalg
i and Ztruth

j share. The Hungarian algorithm
is applied to find the optimum solution for the cluster cor-
respondence problem. Empty rows or columns are inserted
if the number of clusters is different from the ground truth,
i.e., kalg 6= ktruth. Due to the possible occurrence of mul-
tiple AUs in the same frame, we consider AU combinations
as distinct temporal clusters. We consider AUs with a min-
imum duration of 10 video frames. Any frames for which
no AUs occurred were omitted.

Fig. (4b) shows the mean accuracy and variance of the
temporal clustering for both the unsupervised and super-
vised (learned weights) versions of ACA and KMM. The
clustering accuracy with unsupervised ACA was about 63%
for lower face AUs and above 75% for upper face AUs. As
expected, learning weights for ACA improved the temporal
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Figure 4. Clustering performance on RU-FACS database. (a)
Mean and standard deviation for the feature weights. (b) Temporal
clustering accuracy. (b) Confusion matrix for subject S014.

(b)

(c) (d)

 

(e)

−1
−0.5

0
0.5

1
−0.5

0

0.5

−0.5

0

0.5

 

−6
−4

−2
0 −6

−4
−2

0
2

−0.50
0.5

−5
0

5
−6
−4
−2
0
2
4

−2
0
2
4

surprise
sadness
fear
joy
anger

(a)

Figure 6. Clustering of 5 different facial expressions. (a) ACA
embedding. (b) Kernel PCA embedding. (c) PCA embedding. (d)
Clustering accuracy. (e) Temporal clustering accuracy.

clustering in the upper and lower face although not substan-
tially. The mean and variance for the weights for all the fea-
tures in the lower and upper face are shown in Fig. (4a). As
expected the weights give more importance to the appear-
ance features. Fig. (4c) shows a representative lower-face
confusion matrix for subject 14. The AUs were: AU 50
or AU 25, AU 50+12, AU 14, AU 12, AU 12+25+26, AU
12+15 and 17. More details are given in [35].

5.2.2 Infant subject

This experiment shows an application of the proposed tech-
niques to summarize the facial expression of an infant. In-
fant facial behavior is known to be more temporally com-
plex than that of adults. Fig. 5 shows the results of run-
ning unsupervised ACA with 10 clusters in 1000 frames.
We used the appearance and shape features for the eyes and
mouth. These 10 clusters provide a summarization of the
infant’s facial events.

5.3. Facial event discovery for sets of subjects
In this section we test the ability of ACA to cluster facial

behavior corresponding to different subjects. We first report
results for posed facial actions. We then report results for
the more challenging case of unposed, naturally occurring
facial behavior in an interview setting.
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Figure 5. Temporal clustering of an infant facial behavior. Each facial gesture is coded with a different color. The feature represents the
angle of the mouth. Observe how the frames of the same cluster correspond to a similar facial expressions.

5.3.1 Sets of subjects in CK
ACA was used to segment the facial expression data from
CK database [16]. We used the six shape features and all
features were normalized dividing them with respect to the
first frame. The frame kernel was computed as a linear com-
bination of 6 kernels with equal weighting.

In the first experiment on the CK database we tested the
ability of ACA to temporally cluster several expressions of
30 randomly selected subjects (the number of facial expres-
sions varies across subjects). Fig. (6e) shows the mean (and
variance) results for 10 realizations. The number of clusters
is five and nmax = 25. Both ACA and KMM are initialized
10 times and the solution with less error is selected. Again,
ACA outperforms KKM. Fig. (7) shows one example of the
temporal clustering achieved by unsupervised ACA.

The second experiment explores the use of ACA for vi-
sualization of facial events. Fig. (6a) shows the ACA em-
bedding of 112 sequences from 30 randomly selected sub-
jects (different expressions). The embedding is done by
computing the first three eigenvectors of the kernel seg-
ment matrix (T). In this experiment, the kernel segment
matrix is computed using the ground-truth data (expression
labels). Each point represents a video segment of facial ex-
pression. Fig. (6b) and Fig. (6c) represent the embedding
found kernel PCA and PCA using independent frames (the
frames are embedded using the first three eigenvectors of
the kernel sample matrix K). Because each frame repre-
sents a point it is harder to visualize the temporal structure
of the facial events. To test the quality of the embedding for
clustering, we randomly generated 10 sets of the facial ex-
pression for 30 subjects. For each set the ground-truth label
is known and the ”optimal” three dimensional embedding is
computed. Then we run KMM to cluster the data into five
clusters. The results (mean and variance) of the clustering
are shown in Fig. (6d). As expected, the segment embed-
ding provided by ACA achieves higher clustering accuracy
than kernel PCA or PCA on independent frames.

5.3.2 Sets of subjects in RU-FACS
This section tested the ability of ACA to discover dynamic
facial events in a more challenging database of naturally oc-

Figure 8. Temporal clustering across individuals (RU-FACS).

curring facial behavior of multiple people. Several issues
contribute to the challenge of this task on the RU-FACS
database. These include non-frontal pose, moderate out-of-
plane head motion, subject variability and the exponential
nature of possible facial action combinations.

To solve this challenging scenario two strategies are con-
sidered: (1) ACA+CAT: concatenate all videos and run
ACA in the concatenated video sequence, (2) ACA+MDA:
Run ACA independently for each individual and solve for
the correspondence of clusters across people using the Mul-
tidimensional Assignment Algorithm (MDA) [24]. We pro-
pose a heuristic approach to solve the multidimensional as-
signment problem called Pairwise Approximation Multidi-
mensional Assignment(PA-MDA). Details of the algorithm
are given in [35].

Using the same features as section 5.2.1, we randomly
selected 10 sets of 5 people and report the mean clustering
results and variance. For ACA+MDA, we kept the same pa-
rameter setting as in the previous segmentation of one sub-
ject. The number of clusters in ACA+CAT was set to 14 ∼
17 and the length constraint is the same as before (80). As
shown in Fig. (8), ACA+MDA achieved more accurate seg-
mentation than ACA+CAT. Moreover, ACA+MDA scales
better for clustering many videos. Recall that ACA+CAT
scales quadratically in space and time, and this can be a
limitation when processing many subjects. As expected the
clustering performance is lower than in the case of using
only clustering one individual.

Fig. (9a) shows the results for temporal segmentation
achieved by ACA+MDA on subjects S012, S028 and S049.
Each color denotes a temporal cluster discovered by ACA.
Fig. (9) shows some of the dynamic vocabularies for facial
expression analysis discovered by ACA+MDA. The algo-
rithm correctly discovers smiling, silent, and talking as dif-
ferent facial events. Visual inspection of all subjects’ data
suggests that the vocabulary of facial events is moderately
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Figure 9. a) Results obtained by ACA on subjects S012, S028 and S049. b) Corresponding frames found by ACA+MDA.

consistent with human evaluation. More details and updated
results are given in [35].

6. Conclusions and future work
At present, taxonomies of facial expression are based on

FACS or other observer-based schemes. Consequently, ap-
proaches to automatic facial expression recognition are de-
pendent on access to corpuses of FACS or similarly labeled
video. This is a significant concern, in that recent work sug-
gests that extremely large corpuses of labeled data may be
needed to train robust classifiers. This paper raises the ques-
tion of whether facial actions can be learned directly from
video in an unsupervised manner.

We developed a method for temporal clustering of facial
behavior that solves for correspondences between dynamic
events and has shown promising concurrent validity with

manual FACS. In experimental tests using the RU-FACS
database, agreement between facial actions identified by un-
supervised analysis of face dynamics and FACS approached
the level of agreement that has been found between inde-
pendent FACS coders. These findings suggest that unsu-
pervised learning of facial expression is a promising alter-
native to supervised learning of FACS-based actions. At
least three benefits follow. One is the prospect that auto-
matic facial expression analysis may be freed from its de-
pendence on observer-based labeling. Second, because the
current approach is fully empirical, it potentially can iden-
tify regularities in video that have not been anticipated by
the top-down approaches such as FACS. New discoveries
become possible. This becomes especially important as
automatic facial expression analysis increasingly develops
new metrics, such as system dynamics, not easily captured
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by observer-based labeling. Three, similar benefits may ac-
crue in other areas of image understanding of human behav-
ior. Recent efforts to develop vocabularies and grammars
of human actions [13] depend on advances in unsupervised
learning. The current work may contribute to this effort.
Current challenges include how best to scale ACA for very
large databases and increase accuracy for subtle facial ac-
tions. We are especially interested in applications of ACA
to detection of anomalous actions and efficient image in-
dexing and retrieval. See [35] for more results.
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