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Abstract

In this supplementary material, we provide more details
of the four steps of our factorized graph matching (FGM)
algorithm: (1) the line search for λ, (2) the modified Frank-
Wolfe algorithm, (3) the concave-convex procedure and (4)
the local vs. global strategy.

1. The line search for λ

The Frank-Wolfe’s algorithm (FW) [1] involves two
steps: (1) the computation of the optimal direction Y ∈
Rn1×n2 , and (2) the line search for the optimal step size
λ ∈ [0, 1]. In the submitted paper, we mentioned that the
former issue can be efficiently solved using the Hungarian
algorithm. In this supplementary material we solve the sec-
ond one.

Given the optimal direction Y ∈ Rn1×n2 , the line search
step maximizes Jα(X + λY) over λ ∈ [0, 1]. The optimal
λ can be computed in a closed form by finding the optimum
point of the following parabola:

Jα(X+ λY) = aλ2 + bλ+ const, (1)

where a = (1− α)avex + αacav,

b = (1− α)bvex + αbcav.

To compute the convex components, avex and bvex, we
firstly expand the convex relaxation as follows:

Jvex(X) = Jgm(X)− 1
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Therefore, we can obtain:

Jvex(X+ λY) = avexλ
2 + bvexλ+ const,

where avex = tr
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Similarly, we can compute the concave components,
acav and bcav as follows:

Jcav(X+ λY) = acavλ
2 + bcavλ+ const,
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The optimum point of the parabola (Eq. 1) must be one of
the three points, 0, 1 or − b

2a . Therefore, a straightforward
way to obtain the optimal λ∗ is to compute the objective
values Jα(X + λY) for λ ∈ {0, 1,− b

2a} and pick the one
yielding the largest value. However, it is more efficient to
choose λ∗ based on the geometry of the parabola. In our
implementation, we adopted the following strategy:

λ∗ =
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2. The modified Frank-Wolfe algorithm
In the submitted paper, we adopted a modified Frank-

Wolfe algorithm (MFW) presented in [2] to improve the
convergence rate of the original FW algorithm. The basic
idea of MFW is that the direction computed by FW might
not be optimal. To improve that, we consider an alternative
direction which is a convex combination of several previ-
ously computed directions. Note that this new direction is
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still feasible due to the convex combination. More specif-
ically, suppose that at step t we compute the optimum Yt,
and meanwhile, we keep a record of the m previously com-
puted directions, Yt−1,Yt−2, · · · ,Yt−m. Then the opti-
mum Y∗ would be either Yt or Ŷ .

= 1
m

∑m
i=1 Yt−i based

on the following criteria,

Y∗ =
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Ŷ, otherwise.

In the experiments, we set m = 10 which consistently led
to a faster convergence rate.

3. The concave-convex procedure
In the submitted paper, we adopted the concave-convex

procedure (CCCP) presented in [4] to improve the optimiza-
tion performance. The main intuition of using CCCP is to
take the advantage of the concave-convex structure of the
objective, Jα(X) = (1 − α)Jvex(X) + αJcav(X). In our
case, CCCP approximates the non-convex Jα(X) by opti-
mizing a series of convex sub-problems:

max
X

Jα(X) = (1− α)Jvex(X) + α tr(∇Jcav(X0)
TX) (2)

s. t. X1n2 ≤ 1n1 ,X
T1n1 ≤ 1n2 ,X ≥ 0n1×n2

where Eq. 2 is obtained by the 1st-order Taylor expansion
around the previous solution X0. We iteratively optimize
each sub-problem of Eq. 2 via the MFW.

4. The local vs. global strategy
In the submitted paper, we adopted a heuristic strategy

(i.e., step 9 of Algorithm 1) to improve the optimization
performance of the path-following strategy. The basic idea
is to compute X∗ by optimizing Jgm(X) instead of Jα(X)
in the case when MFW or CCCP does not improve Jgm(X).
This step is similar to [3], in which Leordeanu et al. adopted
FW to optimize Jgm(X) over X. We take the same step as
[3] of using FW except for the computation of the gradi-
ent. This is because we never computed the costly K. In a
nutshell, we compute the gradient as follows:

∇Jgm(X) = 2H1(H
T
1 XH2 ◦ L)HT
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which is equivalent to the one proposed in [3]:

∇xTKx = 2Kx
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