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a b s t r a c t 

Leveraging the abundant knowledge learned from pre-trained multi-modal models like CLIP has recently 

proved to be effective for text-guided image editing. Though convincing results have been made when 

combining the image generator StyleGAN with CLIP, most methods need to train separate models for 

different prompts, and irrelevant regions are often changed after editing due to the lack of spatial disen- 

tanglement. We propose a novel framework that can edit different images according to different prompts 

in one model. Besides, an innovative region-based spatial attention mechanism is adopted to explicitly 

guarantee the locality of editing. Experiments mainly in the face domain verify the feasibility of our 

framework and show that when multi-text editing and local editing are accomplishable, our method can 

complete practical applications like sequential editing and regional style transfer. 

© 2023 Elsevier Ltd. All rights reserved. 
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. Introduction 

In recent years, we have witnessed rapid progress of genera- 

ive models in various domains ranging from image [1] , natural 

anguage [2] to speech [3] . Particularly on image synthesis, the 

ioneering work of StyleGAN [4–6] can generate high-resolution 

hoto-realism images on specific domains like faces and cars. 

oreover, the latent space of StyleGAN is highly structured, indi- 

ating that multiple visual attributes have their corresponding di- 

ections in the latent space. Recent works [7–10] thus focused on 

nalyzing the latent space and finding specific directions for image 

diting. 

However, these methods usually need large quantities of an- 

otated data to find one specific direction or can only passively 

iscover directions with thorough manual examinations. To de- 

elop a more user-friendly interface, StyleCLIP [11] originally pro- 

oses to take natural language into account. Regarding Contrastive 

anguage-Image Pre-training (CLIP) model [12] as a universal at- 

ribute classifier, StyleCLIP manipulates the image in a freer man- 

er. Along this line of thought, several works [13,14] seek for dif- 

erent ways to leverage the power of CLIP to enable text-guided 
∗ Corresponding author. 
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mage manipulation or generation. As CLIP provides precise image- 

ext semantic similarity, the main idea of these works is to op- 

imize the parameters of the generator to improve feature align- 

ents between generated images and given texts. 

Though compelling image editing results have been made, re- 

ent works have their limitations. First of all, most contemporary 

orks are optimization-based, that is, per-prompt or per-sample 

ptimization is needed when encountering a new text or even a 

ew image, which limits their scalability. Secondly, different from 

mage generation, the purpose of image editing is to semantically 

anipulate the relevant regions while keeping the rest unchanged. 

owever, most current works just ensure that the edited image has 

he target attribute but unmentioned attributes are often changed 

imultaneously. Although the disentanglement of StyleGAN’s latent 

pace is well studied [7] , it is implicit and statistical, which means 

ts validity is not guaranteed in all cases. Thus these methods often 

ead to unwanted changes. 

In this paper, we aim to resolve these limitations. First, simi- 

ar to pre-CLIP period text-to-image generation works [15,16] , we 

se a mapping module conditional on the text embedding to edit 

he original latent code of the image generator. We adopt a similar 

tructure as in LAFITE [14] . Unlike image generation, our editing 

ask does not need to model the real image distribution. Thus we 

mbrace a lightweight version of LAFITE which excludes the dis- 

riminator. Treating text information as conditional input, we can 

https://doi.org/10.1016/j.patcog.2023.109458
http://www.ScienceDirect.com
http://www.elsevier.com/locate/patcog
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patcog.2023.109458&domain=pdf
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se one model to edit different images with multiple manipula- 

ions, which expands the applicability of our method. 

Second, we propose to use spatial attention maps to specify 

he editing region. Different from previous works [7,10] which de- 

ect style channels for specific semantic regions, we explicitly de- 

and spatial disentanglement. With spatial-wise feature blending, 

ur approach is strictly localized while channel-wise methods have 

heir failure cases. The most related work to us is FEAT [17] , which

lso uses spatial attention maps. However, they need to train sep- 

rated models for different prompts. As spatial attention maps in- 

uce additional optimization degrees of freedom, it is difficult to 

hoose the hyper-parameters to balance different losses, and dif- 

erent prompts usually require different recipes to stabilize training 

nd produce sensible results (See Fig. 7 ). Thus their framework can 

ot be directly extended to the multi-text setting that uses only 

ne model to handle different prompts. 

To alleviate the difficulty of optimization, we introduce region- 

ased attention mechanism, which clusters the feature map of 

tyleGAN into meaningful semantic regions [10] and allocates at- 

ention to these regions instead of pixels. Specifically, since spatial 

ttention aims to restrict the changeable area size of the image, lo- 

al attributes, such as those related to eyes, are naturally more fa- 

orable than global attributes, such as those related to expression. 

herefore, we adopt a region-based attention mechanism to elim- 

nate the effect of area size by averaging the attention value over 

he regional area. With above designs, we explicitly realize spatial 

isentanglement, which is conducive to sequential editing [9] and 

egional style transfer [10] . 

We summarize our contributions as follows: First, we propose 

 novel framework that enables stable training of multi-text image 

diting within one model. Second, we adopt a region-based atten- 

ion mechanism to ensure spatially-localized editing, in which we 

tilize the semantic properties of StyleGAN’s latent space. Finally, 

e show that several practical applications become feasible due 

o these designs, some of which can not be achieved by existing 

orks to the best of our knowledge. 

The rest of the paper is organized as follows. Section 2 in- 

roduces related works on text-guided image editing and enhanc- 

ng spatial disentanglement. Section 3 describes our method and 

ocuses on two main components. Section 4 reports experimen- 

al results and analyzes our attention mechanism. In the end, 

ection 5 summarizes the paper. 

. Related works 

StyleGAN-based Image Editing. StyleGAN [4–6] is one of the 

ost popular Generative Adversarial Networks (GANs) [18] in 

he image domain. It is designed to have a disentangled latent 

pace [7] , which contributes to its ability of editing. A common 

ractice in this field is to find semantic directions in StyleGAN’s 

atent space, and image editing is carried out via moving latent 

odes along these directions. Methods on how to find these direc- 

ions can be grouped as supervised ones [8,19] and unsupervised 

nes [20,21] . In a supervised manner, a large number of images 

ith the target attribute are usually needed to train an attribute 

lassifier. The unsupervised approaches, on the other hand, have 

dopted classical unsupervised learning methods to find salient 

ransformation directions in the latent space. Though annotated 

amples are not needed in unsupervised methods, the discov- 

red directions are restricted and considerable human effort s are 

eeded to verify the semantics of each found direction. Our ap- 

roach is most related to supervised methods, but we treat the 

re-trained CLIP as a universal attribute classifier, thus we can con- 

uct manipulation freely without extra data annotation. 

CLIP for Image Generating and Editing. With the develop- 

ent of contrastive learning [22] and the introduction of attention 
2

echanism into the vision-language field [23] , a new multi-modal 

epresentation learning model CLIP [12] is proposed recently. CLIP 

s trained on 400 million collected text-image pairs, and it aligns 

he features of paired texts and images. StyleCLIP [11] first com- 

ines the powerful representations of CLIP with image generators 

nd enables text-guided image editing. The main idea of StyleCLIP 

s to optimize the generator to increase the similarity, measured by 

LIP, between the generated image and the given text. Compared 

o auto-regressive methods like DALL-E [24] , this optimization- 

ased method needs fewer computation costs [11,14] . Later works 

mploying CLIP mostly follow this paradigm [13,25] . Though high 

delity results can be achieved for a diverse set of manipulations, 

hey often need per-prompt or even per-sample optimization. Re- 

ently, LAFITE [14] is proposed for text-to-image generation. Its 

eneration process is conditional on text information, thus only 

ne model is needed for multiple texts. Our work adopts its struc- 

ure of the mapping module, but as we perform editing, our train- 

ng objectives are different. Besides, we introduce spatial attention 

aps to enable local editing. 

Local Editing. Spatial disentanglement is vital for image edit- 

ng, as the essence of editing is to alter the related regions while 

eeping the unrelated regions unchanged. Several works have fo- 

used on editing local regions, and they can be distinguished into 

wo flavors: implicit channel-wise intervention [7,9,10] and explicit 

patial-wise blending [17,26–29] . The former takes the advantage 

f the disentanglement of StyleGAN’s latent space, as it is found 

hat certain channels in the latent space consistently correlate with 

pecific semantic regions, thus modifying particular channels can 

ead to local changes. These methods need additional segmenta- 

ion networks to detect specific channels [7,9] or human supervi- 

ion to evaluate found channels [10] . Moreover, this spatial disen- 

anglement is statistical, and may not be true for rare cases. As for 

xplicit methods, they usually rely on user-specified masks [26] or 

eed additional attribute classifiers [27] . As a combination of these 

wo flavors, GAN Dissection [30] detects the channel for certain vi- 

ual concepts and operates spatially in the channel to insert the 

oncepts locally. Most related to our work is FEAT [17] , which only 

ses text descriptions to obtain the explicit spatial-wise attention 

ap. Although no additional annotations are needed and the lo- 

ality can be guaranteed, FEAT needs to train an individual model 

or each text, and FEAT is found hard to train stably. As improve- 

ents, our work enables multi-text editing within one model and 

ntroduces a novel way to simplify the optimization process. 

. Method 

.1. Overview 

We use StyleGAN2 [5] as the backbone image generator, and 

e introduce the text information in its StyleSpace [5] , which is 

hown to be more suitable for editing [7,11] . The text input is first 

ncoded by the text encoder of CLIP [12] . Then we propose a map-

ing module to transform style codes of the original image into 

hifted ones conditioned on the text embedding. To enable local 

diting, a region-based attention module is adopted to provide an 

ttention map according to correlations between the image region 

nd the text. The attention map blends the original features of the 

enerator with the shifted ones. Lastly, the blended features are 

ut forward through the generator to obtain the edited image. Dur- 

ng training, the StyleGAN2 generator and the CLIP encoder both 

emain frozen. An illustration of our method is shown in Fig. 1 . 

.2. The mapping module 

We design the mapping module Map following LAFITE [14] , 

hich constructs an effective mapping from the CLIP embedding 
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Fig. 1. An overview of our method. Given a text prompt and the original image, the mapping module is used to modify the style codes while the attention module processes 

the feature maps of the generator to attain the spatial attention map. The attention map is used to fuse the original features and the altered ones in some specific layers. At 

last, the blended features are used to generate the edited image. Best viewed in color. 
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pace to the StyleGAN2 StyleSpace. Specifically, we define the CLIP 

ncoding of the input prompt as h , and the style code from the i th

ayer of StyleGAN2 as s i . The mapping module aims to obtain the 

odified style codes u i = Map i (s i , h ) . 

We first transform h into the condition code c via a two-layer 

ully-connected (FC) network F i . We also add a single-layer FC net- 

ork A 

1 
i 

to convert s i to the same space and obtain s t 
i 
. Next we

oncatenate s t 
i 

and c and transform them to the modified style 

odes u init 
i 

using another single-layer FC network A 

2 
i 
. Finally, we 

dopt the truncation trick [5] to prevent the style codes from de- 

iating too far: 

 i = s i + α(u 

init 
i − s i ) , (1) 

here α is the hyper-parameter of truncation that controls the 

diting degree. 

The trainable parts of the mapping module Map i are F i , A 

1 
i 

and 

 

2 
i 
. To sum up, the calculation of layer i ’s mapping module is as

ollows: 

 i = Map i (s i , h ) = s i + α(A 

2 
i ( concat [ A 

1 
i (s i ) , F i (h )]) − s i ) . (2)

.3. The attention module 

.3.1. The overall calculation process 

The attention module Attn takes the features of StyleGAN2 lay- 

rs as inputs and outputs a single-channel feature map as the spa- 

ial attention. More specifically, we define the feature of the i th 

ayer of the generator as f i ∈ R 

C i ×H i ×W i , where C i represents the 

umber of channels and H i × W i represents the resolution. A 1 × 1 

odulated convolution layer M i is applied for each layer to trans- 

orm the feature map. The modulated convolution scales each in- 

ut channel of the original standard convolution separately accord- 

ng to modulation weights. And we introduce the text information 

y using a learned affine transformation to convert h , the CLIP en- 

oding of the input text, to the modulation weights. Thus we get 
3 
 i = M i ( f i , h ) , where a i ∈ R 

C×H i ×W i is the output layer-wise atten-

ion map, and C is the number of output channels same for differ- 

nt layers. 

To integrate the layer-wise attention maps together, we interpo- 

ate each a i to a certain resolution H × W to get a ∗
i 

∈ R 

C×H×W . Then

 

∗
i 

from different layers can be concatenated along the channel di- 

ension, and they are fed to the final 1 × 1 modulated convolu- 

ion layer M 

f in followed by a sigmoid activation layer to produce 

he initial spatial attention map a ∈ R 

1 ×H×W . 

After acquiring the attention map a , we apply it to blend the 

eatures from specific layers of the generator as in [31] . The details 

f this operation can be found in the Appendix, and it is worth 

oting that it needs a careful scheme to guarantee the locality as 

tyleGAN2 has skip connections. 

.3.2. The region-based attention mechanism 

The above implementation is just a multi-text extension of 

EAT [17] , and our preliminary experiments have shown that train- 

ng is usually unstable, even for single-text. We attribute it to the 

dditional optimization degree of freedom brought by attention. 

he model now has two choices to reduce the loss: to change the 

tyle codes or to change the editing regions, and it is usually tough 

or the model to find equilibrium among them. 

Instead of starting from the entire image, we propose a way 

o select from the structured regions, which makes it easier for 

he model to find a good optimization route without going back 

nd forth on various options. The structured regions are acquired 

y applying k -means clustering [32] to the activation vectors from 

 given layer of the generator, which is also adopted by vari- 

us works like [10,33] to make training more effective. More pre- 

isely, the feature map of one certain layer has dimensionality of 

 × H × W , where C is the number of channels, and H × W is the

patial dimension. Collecting N samples and flattening the features, 
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Fig. 2. k -means clustering results. The 1 st row shows the image. The 2 nd row and the 3 rd row show clustering results for k = 10 and k = 20 respectively. Best viewed in 

color. 
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e can get N × H × W C-dimensional vectors and k -means algo- 

ithm is applied on these vectors. 

We conduct a pilot study in the face domain. After applying k - 

eans to the activation vectors at the 13 th layer of the pre-trained 

tyleGAN2 generator, we obtain semantic segmentation of faces. As 

hown in Fig. 2 , clustered regions are semantically meaningful and 

he discovered clusters are generalizable at the same time. This 

roperty may come from a good scene understanding required for 

eneration. As for our approach, we cluster the features using 100 

amples in advance to obtain the clusters. When processing new 

mages, semantic regions can be segmented according to the stored 

luster centers, and we choose the editing region from multiple se- 

antic areas rather than the whole pixel space. We calculate the 

verage attention value of one semantic region and take it as the 

ew attention value of all locations in this region. Then the clus- 

ered spatial attention map a ∈ R 

1 ×H×W is obtained from the initial 

ttention map a via the above Clus operation. 

For a generator with n layers, the trainable parts of the atten- 

ion module Attn are M i , f or i = 1 , 2 , · · ·, n, and M 

f in . To sum up,

he calculation of our attention module can be encapsulated as fol- 

ows: 

 = Clus ( Sigmoid (M 

f in ( concat n i =1 [ Interpolate (M i ( f i , h ))] , h ))) , 

(3) 

hich can be abbreviated as a = Attn ( f n 
i =1 

, h ) . 

.4. Training objectives 

Our goal is to edit images based on different text inputs while 

eeping irrelevant regions unchanged. For one image x with m dif- 

erent text inputs, each text input is encoded by CLIP to form text 

mbeddings 
{

h j 
}m 

j=1 
. 

First, we aim to reduce the distance between the generated im- 

ge and the conditional prompts h j in the latent space of CLIP. Do- 

ate x 
j 

edit 
and h 

j 

edit 
as the edited image and its corresponding CLIP 

eature respectively, we define a contrastive loss L clip as follows: 

 clip = −
m ∑ 

j=1 

log 
exp ( cos (h 

j 

edit 
, h 

j ) /τ ) ∑ m 

i =1 exp ( cos (h 

i 
edit 

, h 

j ) /τ ) 
, (4) 

here cos (·) represents cosine similarity and τ is the tempera- 

ure hyper-parameter. As observed in [22] , minimizing this objec- 

ive maximizes a lower bound on the mutual information between 

 h 
j 

edit 
} and { h j } , which encourages the editing process to make full

se of the text information. 
4

Second, we regularize the region-based attention map to en- 

ourage editing on a more compact region. At the same time, we 

ncourage each pixel value of the initial attention map to be close 

o the mean value of its belonging region, which is conducive to 

table training. The attention regularization loss L at t n is defined as 

ollows: 

 at t n = λa 1 

m ∑ 

j=1 

k ∑ 

l=1 

∥∥∥a 
j 

l 

∥∥∥
1 

+ λa 2 

m ∑ 

j=1 

∥∥∥a j − a 
j 
∥∥∥2 

2 
, (5) 

here the clustered spatial attention map a j for prompt j is de- 

ned in Eq. (3) , a 
j 

l 
is the mean attention value on region l, and

 

j is the initial attention map before Clus process. Note that the k 

egions are clustered based on the feature vectors from the image 

enerator as stated in Section 3.3.2 . And λa 1 and λa 2 are hyper- 

arameters to balance different losses. 

Third, to further keep the unrelated attributes preserved and 

btain more natural results after editing, we regularize the mod- 

fication strength, which is defined as the Euclidean distance be- 

ween original style codes and edited ones. The mapping regular- 

zation loss L map is defined as: 

 map = 

m ∑ 

j=1 

n ∑ 

i =1 

∥∥u 

j 
i 
− s i 

∥∥2 

2 
, (6) 

here s i is the style code of x at the i th layer of the n -layer gen-

rator, and u 
j 
i 

is the corresponding edited style code for prompt j

efined in Eq. (2) . For real images, style codes can be obtained via

nversion methods like e4e [34] . 

Last, the perceptual distance [35] between images x and x 
j 

edit 
is 

dopted as the regularization target to get smooth editing results: 

 perc = 

m ∑ 

j=1 

perc (x j 
edit 

, x ) , (7) 

here perc (·) represents the calculation of perceptual loss. 

To sum up, our full objective can be written as: 

 = L clip + L at t n + λm 

L map + λp L perc , (8) 

here λm 

and λp are hyper-parameters to balance different losses. 

.5. Inference phase 

After training, text-guided image editing can be conducted with 

he pre-trained image generator, text encoder, and the trained 
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Algorithm 1 Text-Guided Image Editing with Region-Based Atten- 

tion. 

Model: image generator S with n layers, text encoder 

E text ;mapping module Map , attention module Attn ; blending 

layer k . 

Input: style codes { s i } n i =1 of original image x , editing prompt t . 

Output: edited image x edit . 

1: Encode the editing prompt: h = E text (t) ; 

2: Get the modified style codes u i using Equation (2) for i = 

1 , 2 , . . . , n ; 

3: Get S ′ s features maps f i and 

̂ f i corresponding to s i and u i re- 

spectively for i = 1 , 2 , . . . , n ; 

4: Get the attention map a using Equation (3); 

5: Get the blended feature ˜ f k of f k and 

̂ f k at the k th layer of S 

using a and apply S on 

˜ f k to get the edited image x edit ; 

6: return x edit . 

m

m
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t
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Table 1 

Quantitative comparisons when using generic prompts. ↑ indicates that higher 

is better while ↓ indicates that lower is better. Numbers in bold indicate the 

best results. 

Methods FID ( ↓ ) Success Rate ( ↑ ) ID ( ↑ ) Model used ( ↓ ) 
TediGAN [36] 21.70 100.0% 

a 0.59 1 

StyleCLIP [11] 11.40 99.29% 0.82 5 

FEAT [17] 8.11 100.0% b 0.84 5 

Ours 7.22 98.72% 0.86 1 

a We only generate 1,0 0 0 samples to calculate the Success Rate for [36] , 

as [36] needs instance-level optimization, which is time-consuming. 
b It is the assumed best results for [17] , as [17] have not provided their codes 

yet. 
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o

apping module, attention module. This inference process is sum- 

arized in Algorithm 1 . The 5 th step (the blending operation) is 

urther elaborated in the Appendix. 

. Experiments and discussions 

As our method has versatile applications and it is hard to com- 

are under different settings, we first conduct experiments un- 

er the conventional text-guided image editing setting, thus qual- 

tative and quantitative comparisons can be made with previous 

orks. Then we verify the effectiveness of our designed compo- 

ents. Finally, we explore some novel utilizations of our method. 

e train and evaluate our method mainly in the face domain 

hich has practical application scenarios, but it can be easily ex- 

ended to other domains such as cars, and we put the results in 

he Appendix. More implementation details are also provided in 

he Appendix. The source code is available at https://github.com/ 

ig- Brother- Pikachu/Where2edit . 

.1. Experimental settings 

Datasets 

We use the StyleGAN2 model pre-trained on the Flickr-Faces- 

Q Dataset (FFHQ) [4] as our generator. FFHQ contains high qual- 

ty 1024 × 1024 images of human faces. We use the textual de- 

criptions from Multi-Modal-CelebA-HQ (MM CelebA-HQ) [36] as 

ur prompt corpus. There are 30 0,0 0 0 depictions in total, and they 

re generated automatically based on the facial attributes of real 

elebAMask-HQ [37] images. 

Evaluation metrics 

We evaluate the generated images from three aspects: visual 

uality, alignment with text, and attribute preservation. Fréchet In- 

eption Distance (FID) [38] and Inception Score (IS) [39] are used 

o measure the naturalness of edited images. The cosine distance 

etween the image and the conditional text before and after edit- 

ng in the CLIP latent space is compared. And we record the ratio 

f getting closer after editing (Success Rate). Next, we take up a 

ace recognition model FaceNet [40] to measure the identity varia- 

ion after editing using the cosine similarity between the extracted 

eatures (ID). Moreover, PSNR and SSIM are calculated in the inter- 

ection region of non-hair regions before and after editing when 

air-related prompts are used. ID, PSNR, and SSIM all focus on at- 

ribute preservation. 

.2. Standard text-guided editing 

For the standard text-guided editing task, we compare against 

hree closely related baselines: TediGAN [36] , StyleCLIP [11] , 
5 
nd FEAT [17] . Besides, a specialized hair editing method Hair- 

LIP [13] is also considered. TediGAN optimizes the latent codes 

f StyleGAN2 through multi-modal alignment to obtain editing re- 

ults. It is time-consuming in the inference phase and it lacks 

patial disentanglement. StyleCLIP explores three techniques that 

ombine CLIP with StyleGAN2. We focus on the mapper approach, 

hich is closer to our framework. This approach trains separate 

odels for different texts, and it also lacks spatial disentangle- 

ent. FEAT employs an attention network to explicitly encourage 

hanges only in the intended regions. Though spatial disentangle- 

ent is achieved, it is found hard to balance the training objec- 

ives when optimizing directly from the entire area. To make it 

orse, different models are needed for multiple prompts. HairCLIP 

an conduct multi-text editing through one model. However, it is a 

pecialized model for hair editing and it needs an extra parsing 

odel to encourage attribute preservation. Moreover, the spatial 

isentanglement of HairCLIP is not guaranteed, as it only implic- 

tly takes not changing irrelevant attribute areas as an optimization 

bjective. Different from the above approaches, our method trains 

 unified model for different descriptions and we adopt a novel 

ttention mechanism to achieve explicit spatial disentanglement. 

.2.1. Quantitative and qualitative comparisons using generic prompts 

Following FEAT [17] , we evaluate different methods on 10,0 0 0 

andomly generated samples of each prompt and average the re- 

ults of 5 generic editing prompts used in FEAT. As shown in 

able 1 , our method can edit with different prompts through one 

odel, and the success rate is still at a high level. TediGAN [36] ,

hich is based on instance-level optimization, has a 100% success 

ate, but it is time-consuming. Compared with the real-time edit- 

ng ability of other methods, TediGAN needs around 30 s to edit an 

mage. Additionally, our method shows higher visual quality (lower 

ID value) and better attribute preservation (higher ID value) com- 

ared with previous methods, which is the advantage our novel 

ttention module brings. As for statistical tests, the null hypothesis 

hat our ID results are not better can be rejected as the p-value is 

maller than 10 −10 . 

The metrics used above can not fully reveal the performance of 

ach method, which is a common issue in the image generation 

eld, thus we conduct qualitative comparisons. As shown in Fig. 3 , 

ll methods modify the face according to the prompts, but Tedi- 

AN and StyleCLIP tend to change unrelated regions. For instance, 

ediGAN changes the expression when editing the hair, while it al- 

ers the hair when manipulating the expression. As for StyleCLIP, 

t changes the cloth color to purple in the “Purple Hair” case. In 

ontrast, our method can locate the edited region precisely. More 

ualitative results of our method are shown in Fig. 4 . It is worth

oting that all our edits are done through one model with only 

ne forward calculation. 

https://github.com/Big-Brother-Pikachu/Where2edit
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Fig. 3. Qualitative comparisons with TediGAN and StyleCLIP. The 1 st row shows the original images, and the 2 nd row shows the edited results. The differences in pixel 

values before and after editing are shown in the last row. Best viewed in color. 

Fig. 4. More qualitative results of our method. The original images in the 1 st row are edited by the prompts above, and the corresponding edited results are shown in the 

2 nd row. The text-guided attention maps are shown in the last row. Best viewed in color. 

Table 2 

Quantitative comparisons when using hair prompts. ↑ indicates that 

higher is better while ↓ indicates that lower is better. Numbers in bold 

indicate the best results. 

Methods PSNR ( ↑ ) SSIM ( ↑ ) ID ( ↑ ) Model used ( ↓ ) 
TediGAN [36] 24.1 0.79 0.17 1 

StyleCLIP [11] 23.2 0.87 0.79 10 

HairCLIP [13] 27.8 0.92 0.83 1 

Ours 31.2 0.98 0.84 1 
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.2.2. Quantitative and qualitative comparisons using hair prompts 

Following HairCLIP [13] , we evaluate different methods on the 

elebA-HQ test set and average the results of 10 hair editing 

rompts used in HairCLIP. As shown in Table 2 , our method better 

reserves irrelevant attributes. Note that though we did not add 

dentity consistency loss to our objective function while HairCLIP 
6 
id, we still perform better on ID. As for statistical tests, the null 

ypothesis that our results are not better can be rejected as the 

-value is smaller than 10 −10 . Regarding visual results, our method 

an edit the hair with comparable quality as shown in Fig. 5 . Be-

ides, we explicitly ensure changes do not occur in the non-hair 

egion. For example, other methods change the mouth and the col- 

ar in the “Bowlcut Hairstyle” case, while we do not. Though our 

odel has not been specially trained for hair editing, it can locate 

he hair region precisely with the attention module and change 

he hair according to different prompts properly with the mapping 

odule. 

.2.3. Out-of-domain results 

We manifest the generalization capability of our method when 

pplying it to out-of-domain data from MetFaces [5] . We use the 

tyleGAN2 model pre-trained on FFHQ and train the mapping 

odule and the attention module with face description corpus and 
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Fig. 5. Qualitative comparisons with TediGAN, StyleCLIP, and HairCLIP. The last row shows the difference between original images and edited images in pixel space. Best 

viewed in color. 

Fig. 6. The editing results on out-of-domain images. The texts above each column are the editing prompts. The 1 st row shows the original images including portraits, 

sculptures, and sketches. The 2 nd row shows the edited images while the 3 rd row shows the corresponding attention masks. Best viewed in color. 
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ynthesis face images. The e4e model trained for FFHQ is used to 

nverse the images from MetFaces. As shown in Fig. 6 , our method 

orks surprisingly well on the out-of-domain data. Not only does 

he mapping module complete the right modifications, but also 

oes the attention module focus on the correct regions. This phe- 

omenon indicates the nice properties of our method. 

.3. Attention mechanism 

In this section, we verify the effectiveness of our attention 

echanism. We perform an ablation study regarding different 

ays of introducing attention. 

We compare our implementation to one variant that mutes the 

ttention module (W/O Attn) and two variants that eliminate the 

lustering process (W/O Clus). In the absence of the attention mod- 

le, irrelevant attributes are often altered, which is undesirable for 

mage editing. Besides, when eliminating the clustering process as 

he framework proposed in FEAT, the attention region is less ac- 

urate. We speculate that when it is harder to select the region 

f interest, the optimization process will be less stable, thus accu- 

ate results cannot be obtained. In addition, different facial regions 

ave different area sizes, which makes it difficult to decide the 

egularization hyper-parameters. We try different recipes of hyper- 
7 
arameters, where “W/O Clus, small λ” represents a small effect of 

ttention regularization, while “W/O Clus, large λ” in contrast rep- 

esents a large effect of attention regularization. They both have 

heir own drawbacks as the former recipe usually leads to full face 

ttention, while the latter one often partially edits large seman- 

ic regions. Our attention mechanism which regularizes the aver- 

ge attention value of different clustered regions fends off these 

roblems. 

We first show quantitative evaluation results for the ablation 

tudy in Table 3 . We choose prompts with different sizes of regions 

f interest, which are roughly ordered as “Chubby”, “Rosy cheeks”, 

Goatee”, “Sculpted eyebrows”, and “Pouting the lips”. We ran- 

omly generate 10,0 0 0 samples for each prompt to calculate the 

valuation values. “W/O Attn” and “W/O Clus, small λ” change hu- 

an identity to a great extent. On the other hand, “W/O Clus, large 

” can not handle prompts with more global attributes (“Chubby”, 

Rosy cheeks”) as the learned attention masks just cover small re- 

ions. Our proposed attention mechanism can produce more pre- 

ise edits for prompts with different relevant region sizes. As for 

tatistical tests, the null hypothesis that our ID results are not bet- 

er can be rejected as the p-value is smaller than 10 −10 . 

The qualitative comparisons are shown in Fig. 7 , “W/O Attn” al- 

ers almost the whole region while attention-based variants only 
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Table 3 

Quantitative comparisons with different attention mechanism variants. ↑ indicates that higher is better while ↓ indicates that lower is 

better. Numbers in bold indicate the best results. “1” represents “W/O Attn”, “2” represents “W/O Clus, small λ”, and “3” represents “W/O 

Clus, large λ”. 

Prompts 

FID ( ↓ ) ID ( ↑ ) Success Rate ( ↑ ) 
1 2 3 Ours 1 2 3 Ours 1 2 3 Ours 

Chubby 5.03 4.29 0.06 0.57 0.68 0.67 0.97 0.95 99.87% 99.88% 88.26% 96.49% 

Rosy cheeks 9.30 8.35 0.25 6.92 0.79 0.78 0.90 0.90 100.0% 100.0% 98.59% 99.99% 

Goatee 9.64 13.43 26.29 18.42 0.62 0.62 0.72 0.69 99.52% 99.70% 99.34% 99.10% 

Sculpted eyebrows 6.02 5.73 2.64 2.47 0.71 0.70 0.79 0.85 99.76% 99.77% 99.60% 98.71% 

Pouting the lips 17.20 16.44 14.75 11.42 0.71 0.64 0.78 0.79 99.99% 99.98% 99.98% 99.99% 

Average 9.44 9.65 8.80 7.96 0.70 0.68 0.83 0.84 99.83% 99.87% 97.15% 98.86% 

Fig. 7. Qualitative comparisons with different variants of the attention mechanism. The region-changed diagram indicates the region where pixel value changes relative to 

the original image exceed a certain threshold. Best viewed in color. 

Table 4 

Running time of different methods. The training time is in minutes and is recorded when good performance is achieved. 

The per-image inference time is in seconds. 

Phase TediGAN [36] StyleCLIP [11] HairCLIP [13] Ours W/O Attn W/O Clus 

Training (min) - 67 124 132 = 20 + 112 99 108 

Inference (sec/img) 35.80 0.22 0.32 0.29 0.26 0.28 
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ffect the interior of attention areas. More specifically, “W/O Attn”

reatly changes the identity of the edited person. For hair editing, 

he mouth, the eyes, and the skin color are changed, while for eye- 

row editing, the mouth, the eyes are changed. “W/O Clus, small λ”

lso leads to full face modification. In addition, “W/O Clus, large λ”

nly partially edits large semantic regions like hair, which leads to 

nnatural results as we seldom have half blond and half black hair 

ike this. Our proposed attention mechanism decides where to edit 

ore precisely, which is conducive to improving editing quality. 

.4. Running time analysis 

We conduct running time analysis for different methods. As al- 

orithms all operate on an individual sample, the training time in- 

reases linearly with the number of training steps while the infer- 

nce time increases linearly with the number of samples. Although 

ur method adopts a contrastive loss for training, it is calculated 

ithin a batch, thus the linearity remains. We evaluate training 

ime using 7 NVIDIA GTX 2080Ti GPUs and we exclude the train- 

ng time for pre-trained models. Our method needs 20 min for 

rior clustering and TediGAN has no parameters to train. The infer- 

nce time is evaluated using 1 NVIDIA GTX 2080Ti GPU. We record 

he time to edit 50 images and average the results. As shown in 

able 4 , the training time and inference time of our method are 

t the same level as those of StyleCLIP and HairCLIP. It is worth 

oting that we can all edit images in real time. And we are all

uch faster than the instance-level optimization method TediGAN. 

esides, StyleCLIP needs to train separate models for different edit- 

ng prompts and the result shown here is for training one prompt. 
8 
s for different variants of our method, the running time has not 

uch difference. 

.5. Applications 

Since multi-text editing and local editing are enabled, a wide 

ange of tasks can be completed through our method. Some of 

hem are shown in this section to demonstrate the extensibility 

f our method. 

.5.1. Sequential editing 

One requirement of a practical image editing application is the 

bility to edit sequentially. Spatial disentanglement is beneficial for 

equential editing, as subsequent manipulations will not affect pre- 

ious ones if different regions have participated. We first compare 

ur method with TediGAN [36] and StyleCLIP [11] , which do not 

ake spatial disentanglement into account. As shown in Fig. 8 , our 

ethod only alters relevant regions, and after multi-turn manip- 

lations, our image quality and editing precision remain at a high 

evel. For instance, TediGAN gradually turns the man into a woman 

s the editing progresses on the left side of the 1 st row. More- 

ver, the angry woman generated by StyleCLIP on the right side 

f the 2 nd row looks unnatural. We speculate that this is due to 

he deviation of the feature map from its true distribution caused 

y multiple global changes. As for our method, each manipulation 

nly alters the feature map at the corresponding location thanks 

o the attention mechanism. Thus our feature map will not be dra- 

atically modified due to sequential editing as in these competing 

ethods. 
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Fig. 8. Qualitative comparisons under sequential editing setting with methods that do not consider spatial disentanglement. Best viewed in color. 

Fig. 9. Qualitative comparisons under sequential editing setting with a local editing method. The region-changed diagram indicates the region where pixel value changes 

relative to the previous image exceed a certain threshold. Best viewed in color. 

Fig. 10. Handle long prompts using sequential editing. The 1 st row shows the one-turn editing results while the 2 nd row shows the sequential editing results. Best viewed 

in color. 
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Besides, we compare our method with ASC_Units [9] , which 

onsiders spatial disentanglement. More specifically, ASC_Units is 

n implicit approach that detects attribute-specific channels for lo- 

al transformations. As shown in Fig. 9 , our explicit spatial atten- 

ion map restricts the editing region more precisely, and multiple 

anipulations only have minimal interactions. 

Finally, we demonstrate that with sequential editing, long 

rompts can be processed more accurately. When the editing 

rompt contains a large quantity of attributes, it is difficult for the 

diting model to handle all of them. One solution is to divide the 

ace description into multiple single attributes and add them to 

he face one by one. As shown in Fig. 10 , we use long sentences to

nclude all the previous attributes for one-turn editing. And when 

he prompt includes too many attributes, the editing result will not 
9 
eflect all the attributes. On the contrary, the results at the 2 nd 

ow cover the entire attributes well when attributes are added se- 

uentially. 

.5.2. Regional style transfer 

Performing semantic part transformation from a reference im- 

ge constitutes an interesting image editing tool. Our framework 

as the ability to complete this task. We use a facial description 

o determine the editing region through the attention module, and 

se the CLIP feature of the reference image as the condition of the 

apping module. As shown in Fig. 11 , we can adaptively change 

he style of one specific semantic part of the target image accord- 

ng to the reference image without affecting other semantic parts. 

ompared with simple feature blending [26] , our framework can 
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Fig. 11. Qualitative comparisons under regional style transfer setting. The target face is on the top left and reference images are on the right of the 1 st row. Facial descriptions 

above each column are used to determine semantic parts of interest. Best viewed in color. 

Fig. 12. Editing specific facial regions with innovative prompts. The original images are in the 1 st column. Appearance prompts are shown above each column while attention 

prompts are shown below. Best viewed in color. 
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etter handle the misalignment between the reference face and the 

arget face. For instance, the simple blending results of hair style 

ransfer produce unnatural artifacts while our method maintains 

he hair shape. 

.5.3. Two-prompt editing 

At last, we show a more artistic application inspired by [17] . 

ame as Section 4.5.2 , we use usual facial descriptions to decide 

he editing region but use more imaginative descriptions for the 

ppearance. More specifically, we use the attention maps derived 

rom the attention prompts to determine the editing region. Then, 

he appearance prompts modify the style codes through the map- 

ing module. At last, we can get more free-form images as shown 

n Fig. 12 . As we can see, the “Spring” prompt makes the face more 
10 
plendid. The prompt “Monster” for the mouth area can lead to 

ucktooth. The prompt “Hulk”, a movie character, can lead to a 

reen appearance. And the prompt “Flaming” makes the hair “Fire”. 

.6. Discussions 

Recent work about local editing favors the implicit 

ethod [7,10] , we develop along another route: the explicit 

ethod, which preserves irrelevant attributes better than implicit 

ethods in principle. But current explicit methods usually require 

ser-provided masks. We instead decide where to edit completely 

ccording to the prompts, so as to make the editing process more 

utomatic and reduce the efforts of users. Experiment comparisons 

n Section 4.5.1 demonstrate the irrelevant attribute preservation 
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bility of our method. And as our framework provides a more 

ntuitive interface for explicit methods, it may stimulate further 

esearch in this direction. 

Besides, our framework may contribute to video generation 

asks as our method has a good insight into what to change 

nd retain when synthesizing new images. Frames about a person 

hanging expressions can be easily generated using our method, 

hich is impossible for typical image synthesis methods as tem- 

oral continuity should be considered for videos. 

Finally, local editing requires a deeper understanding of the 

ynthesis process, as it needs to establish a finer correspondence 

etween semantics and images. Our method can help to reveal 

ow the large generator locates different attributes, which may in- 

pire interpretability research. 

. Conclusion 

In this paper, we propose a new approach for text-guided image 

diting. With a novel mapping module, our method is more flexi- 

le, as we can edit different images according to different prompts 

sing one model in real-time. Moreover, the difference between 

anipulation and generation lies in the change of irrelevant at- 

ributes, as editing requires unrelated attributes well preserved. 

herefore we have to choose where to edit in addition to how 

o change. We propose a novel region-based attention mechanism, 

hich explicitly restricts the editing region with the spatial atten- 

ion map related to the prompt. To stabilize training, we utilize 

he spatial information learned in the generator to simplify the lo- 

alization process. Experiments mainly in the face domain demon- 

trate the effectiveness of our framework as well as our attention 

echanism. Additionally, our method has a broad range of applica- 

ions, some of which have not been well solved by previous meth- 

ds. 

As for the weakness of our method, we rely on the clustering 

esult of StyleGAN2 features, which sets an upper bound on the 

ccuracy of the attention map. Some clustering regions may be 

omposed of several semantic parts, thus we will take trainable 

lustering centers into account later. Another issue relates to the 

diting of real images, we adopt the GAN-inversion method to ob- 

ain the style codes of real images. But the reconstruction is far 

rom perfect in general, thus edited images usually change globally 

ompared with the original real images. In future work, we will 

onsider new generative models with better reconstruction qual- 

ty, such as the diffusion model [25] . 
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